Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Immunopharmacol Immunotoxicol ; 46(2): 183-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224264

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a pulmonary fibrotic disease characterized by a poor prognosis, which its pathogenesis involves the accumulation of abnormal fibrous tissue, inflammation, and oxidative stress. Ivermectin, a positive allosteric modulator of GABAA receptor, exerts anti-inflammatory and antioxidant properties in preclinical studies. The present study investigates the potential protective effects of ivermectin treatment in rats against bleomycin-induced IPF. MATERIALS AND METHODS: The present study involved 42 male Wistar rats, which were divided into five groups: control (without induction of IPF), bleomycin (IPF-induced by bleomycin 2.5 mg/kg, by intratracheal administration), and three fibrosis groups receiving ivermectin (0.5, 1, and 3 mg/kg). lung tissues were harvested for measurement of oxidative stress [via myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH)] and inflammatory markers (tumor necrosis factor-α [TNF-α], interleukin-1ß [IL-1ß], and transforming growth factor-ß [TGF-ß]). Histological assessments of tissue damage were performed using hematoxylin-eosin (H&E) and Masson's trichrome staining methods. RESULTS: The induction of fibrosis via bleomycin was found to increase levels of MPO as well as TNF-α, IL-1ß, and TGF-ß while decrease SOD activity and GSH level. Treatment with ivermectin at a dosage of 3 mg/kg was able to reverse the effects of bleomycin-induced fibrosis on these markers. In addition, results from H&E and Masson's trichrome staining showed that ivermectin treatment at this same dose reduced tissue damage and pulmonary fibrosis. CONCLUSION: The data obtained from this study indicate that ivermectin may have therapeutic benefits for IPF, likely due to its ability to reduce inflammation and mitigate oxidative stress-induced toxicity.


Subject(s)
Pulmonary Fibrosis , Rats , Male , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Bleomycin/adverse effects , Ivermectin/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Lung/metabolism , Oxidative Stress , Transforming Growth Factor beta , Glutathione/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...